Comparison of Searching Behaviour of Three Evolutionary Algorithms Applied to Water Distribution System Design Optimization

Author:

Bi Weiwei,Xu Yihui,Wang Hongyu

Abstract

Over the past few decades, various evolutionary algorithms (EAs) have been applied to the optimization design of water distribution systems (WDSs). An important research area is to compare the performance of these EAs, thereby offering guidance for the selection of the appropriate EAs for practical implementations. Such comparisons are mainly based on the final solution statistics and, hence, are unable to provide knowledge on how different EAs reach the final optimal solutions and why different EAs performed differently in identifying optimal solutions. To this end, this paper aims to compare the real-time searching behaviour of three widely used EAs, which are genetic algorithms (GAs), the differential evolution (DE) algorithm and the ant colony optimization (ACO). These three EAs are applied to five WDS benchmarking case studies with different scales and complexities, and a set of five metrics are used to measure their run-time searching quality and convergence properties. Results show that the run-time metrics can effectively reveal the underlying searching mechanisms associated with each EA, which significantly goes beyond the knowledge from the traditional end-of-run solution statistics. It is observed that the DE is able to identify better solutions if moderate and large computational budgets are allowed due to its great ability in maintaining the balance between the exploration and exploitation. However, if the computational resources are rather limited or the decision has to be made in a very short time (e.g., real-time WDS operation), the GA can be a good choice as it can always identify better solutions than the DE and ACO at the early searching stages. Based on the results, the ACO performs the worst for the five case study considered. The outcome of this study is the offer of guidance for the algorithm selection based on the available computation resources, as well as knowledge into the EA’s underlying searching behaviours.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3