Analysis of Reasons for Reduced Strength of Multiply Conveyor Belt Splices

Author:

Bajda MirosławORCID,Hardygóra Monika

Abstract

Belt conveyors are used for the transportation of bulk materials in a number of different branches of industry, especially in mining and power industries or in shipping ports. The main component of a belt conveyor is its belt, which serves both as a support for the transported material along the conveyor route and as an element in the drive transmission system. Being crucial to the effective and reliable operation of the conveyor, the belt is also its most expensive and the least durable element. A conveyor belt comprises a core, covers and edges. A multiply textile belt, in which the core is constructed of synthetic fibers such as polyamide, polyester or aramid, is the oldest and still the most commonly used conveyor belt type. The plies are joined with a thin layer of rubber or another material (usually the material is the same as the material used in the covers), which provides the required delamination strength to the belt and allows the plies to move relative to each other as the belt is bent. Belts are installed on the conveyors in a closed loop in order to join belt sections, whose number and length depend on the length and type of the belt conveyor. Belts are joined with each other in a splicing procedure. The cutting of the belt core causes belt splices to be prone to concentrated stresses. The discontinued core also causes the belt to be the weakest element in a conveyor belt loop. The article presents the results of strength parameter tests that were performed on laboratory and industrial splices and indicated the reasons for the reduced strength of conveyor belt splices. Splice strength is reduced mainly due to incorrect preparation of the spliced surfaces and to different mechanical parameters of the spliced belts.

Funder

Ministerstwo Nauki i Szkolnictwa Wyższego

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3