An Electro-Oculogram Based Vision System for Grasp Assistive Devices—A Proof of Concept Study

Author:

Roy RinkuORCID,Mahadevappa ManjunathaORCID,Nazarpour KianoushORCID

Abstract

Humans typically fixate on objects before moving their arm to grasp the object. Patients with ALS disorder can also select the object with their intact eye movement, but are unable to move their limb due to the loss of voluntary muscle control. Though several research works have already achieved success in generating the correct grasp type from their brain measurement, we are still searching for fine controll over an object with a grasp assistive device (orthosis/exoskeleton/robotic arm). Object orientation and object width are two important parameters for controlling the wrist angle and the grasp aperture of the assistive device to replicate a human-like stable grasp. Vision systems are already evolved to measure the geometrical attributes of the object to control the grasp with a prosthetic hand. However, most of the existing vision systems are integrated with electromyography and require some amount of voluntary muscle movement to control the vision system. Due to that reason, those systems are not beneficial for the users with brain-controlled assistive devices. Here, we implemented a vision system which can be controlled through the human gaze. We measured the vertical and horizontal electrooculogram signals and controlled the pan and tilt of a cap-mounted webcam to keep the object of interest in focus and at the centre of the picture. A simple ‘signature’ extraction procedure was also utilized to reduce the algorithmic complexity and system storage capacity. The developed device has been tested with ten healthy participants. We approximated the object orientation and the size of the object and determined an appropriate wrist orientation angle and the grasp aperture size within 22 ms. The combined accuracy exceeded 75%. The integration of the proposed system with the brain-controlled grasp assistive device and increasing the number of grasps can offer more natural manoeuvring in grasp for ALS patients.

Funder

Engineering and Physical Sciences Research Council

INSPIRE Fellowship, Ministry of Science and Technology, Government of India.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3