Recent Trends in S. aureus and E. coli-Based Endometritis, and the Therapeutic Evaluation of Sodium Alginate-Based Antibiotics and Nanoparticles

Author:

Talib Muzammil12,Nabeel Muhammad Ashir2,Haq Shahbaz Ul1ORCID,Waqas Muhammad Salman2,Jamil Huma2,Aqib Amjad Islam3ORCID,Muneer Afshan4,Fouad Dalia5,Ataya Farid Shokry6ORCID

Affiliation:

1. Department of Pharmacology, Shantou University Medical College, Shantou 515041, China

2. Department of Theriogenology, University of Agriculture, Faisalabad 38000, Pakistan

3. Department of Medicine, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan

4. Department of Zoology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan

5. Department of Zoology, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia

6. Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

Abstract

Postpartum infection of the uterus by pathogenic bacteria is exacerbated due to a lack of sufficient epidemiological studies and evidence-based therapeutics. Therefore, this study was planned to find the prevalence, risk factors, and drug-resistance profile of S. aureus and E. coli isolated from bovine endometritis and to evaluate the antibacterial potential of sodium alginate-based antibiotics and nanoparticles. The study revealed 34.21% S. aureus and 31.57% E. coli, whereas most of the assumed risk factors presented significant association in this study. S. aureus showed the highest resistance against fusidic acid (60%) and cefoxitin (50%), while the highest resistance in E. coli was found against fusidic acid (60%), gentamicin (60%), chloramphenicol (50%), and cefoxitin (50%). Tylosin coupled with MgO nanoparticles stabilized in sodium alginate gel (Tylo + MgO + gel) presented significantly lower minimum inhibitory concentration (MIC) against E. coli, showing 13.88 ± 4.51 µg/mL after 24 h incubation. On the other hand, gel-based preparations showed MIC as 31.25 ± 0 µg/mL (Tylo + gel + MgO) and 26.04 ± 9.02 µg/mL (Tylo + Gel) against S. aureus. Generally, the MICs of non-gel-based preparations were significantly higher against bacteria except ampicillin against S. aureus in this study. The toxicity analysis of MgO nanoparticles presented 20–80% mortality of snails against a wider range of 0.01 mg/mL–10 mg/mL. The histopathological parameters concluded MgO nanoparticles safe to use on off targets. The current study thus concludes the rise in antimicrobial resistance while the gel-based products appearing as effective antimicrobials with sufficient safety margins for off-targets. The study thus invites further investigation for the development of suitable and affordable modified therapeutics for better health and production of animals.

Funder

Ministry of Education

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3