Activated Carbon-Incorporated Tragacanth Gum Hydrogel Biocomposite: A Promising Adsorbent for Crystal Violet Dye Removal from Aqueous Solutions

Author:

Thamer Badr M.1ORCID,Al-aizari Faiz A.1ORCID,Abdo Hany S.2ORCID

Affiliation:

1. Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

2. Department of Mechanical Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia

Abstract

Biomaterials-based adsorbents have emerged as a sustainable and promising solution for water purification, owing to their eco-friendly nature and remarkable adsorption capacities. In this study, a biocomposite hydrogel was prepared by the incorporation of activated carbon derived from pomegranate peels (PPAC) in tragacanth gum (TG). The hydrogel biocomposite (PPAC/TG) showed a porous structure, a negative surface charge at a pH of more than 4.9, and good stability in aqueous media. The adsorption properties of the PPAC/TG hydrogel biocomposite were assessed for the removal of crystal violet dye (CV) from aqueous solutions using a batch adsorption. The equilibrium adsorption data followed the Sips isotherm model, as supported by the calculated R2 (>0.99), r-χ2 (<64), and standard error values (<16). According to the Sips model, the maximum values of the adsorption capacity of PPAC/TG were 455.61, 470.86, and 477.37 mg/g at temperatures of 25, 30, and 35 °C, respectively. The adsorption kinetic of CV onto the PPAC/TG hydrogel biocomposite was well described by the pseudo-second-order model with R2 values more than 0.999 and r-χ2 values less than 12. Thermodynamic studies confirmed that the CV dye adsorption was spontaneous and endothermic. Furthermore, the prepared hydrogel exhibited excellent reusability, retaining its adsorption capacity even after being used more than five times. Overall, this study concludes that the prepared PPAC/TG exhibited a significant adsorption capacity for cationic dyes, indicating its potential as an effective and eco-friendly adsorbent for water treatment.

Funder

King Saud University

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3