Removal of Malachite Green by Poly(acrylamide-co-acrylic acid) Hydrogels: Analysis of Coulombic and Hydrogen Bond Donor–Acceptor Interactions

Author:

Hamri Salah12ORCID,Bouzi Bouchra2,Lerari Djahida1,Dergal Fayçal1ORCID,Bouchaour Tewfik2ORCID,Bachari Khaldoun1ORCID,Bouberka Zohra3,Maschke Ulrich4ORCID

Affiliation:

1. Center for Scientific and Technical Research in Physico-Chemical Analysis (CRAPC), BP 384, Industrial Zone, 42004 BouIsmaïl, Algeria

2. Macromolecular Research Laboratory (LRM), Faculty of Sciences, Abou Bekr Belkaid University, BP 119, 13000 Tlemcen, Algeria

3. Laboratoire Physico-Chimie des Matériaux-Catalyse et Environnement (LPCMCE), Université des Sciences et de la Technologie d’Oran Mohamed Boudiaf (USTOMB), BP 1505, 31000 Oran, Algeria

4. Unité Matériaux et Transformations—UMET, UMR 8207, Université de Lille, CNRS, INRAE, Centrale Lille, 59000 Lille, France

Abstract

Water pollution caused by dyes poses a significant threat to life on earth. Poly(acrylamide-co-acrylic acid) hydrogels are widely used to treat wastewater from various pollutants. This study aims to examine the removal of malachite green (MG), a harmful and persistent dye that could cause extensive environmental damage, from an aqueous solution by adjusting the initial concentration of acrylamide (AM) and the degree of copolymer crosslinking. The copolymer hydrogels efficiently eliminate MG in a brief timeframe. The most successful hydrogel accomplished a removal rate exceeding 96%. The copolymer of 4 wt % 1,6-hexanediol diacrylate and a concentration of 100 mg/mL AM was effective. The degree of swelling was affected by crosslinking density as expected, with low crosslinking ratios resulting in significant swelling and high ratios resulting in less swelling. To evaluate the results, a docking approach was used which presented three crosslinked models: low, medium, and high. The copolymer–dye hydrogel system displayed robust hydrogen bonding interactions, as confirmed by the high quantities of both donors and acceptors. It was determined that MG contains six rotatable bonds, enabling it to adapt and interact with the copolymer chains. The dye and copolymer enhance H-bond formation by providing two hydrogen bond donors and 16 hydrogen bond acceptors, respectively. Through capitalizing on cationic and anionic effects, the ionic MG/copolymer hydrogel system improves retention efficiency by enhancing attraction between opposing charges. It is interesting to note that the synthesized copolymer is able to remove 96.4% of MG from aqueous media within one hour of contact time.

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3