Abstract
Arc (anoxic redox control), one of the most intensely investigated two-component regulatory systems in γ-proteobacteria, plays a major role in mediating the metabolic transition from aerobiosis to anaerobiosis. In Shewanella oneidensis, a research model for respiratory versatility, Arc is crucial for aerobic growth. However, how this occurs remains largely unknown. In this study, we demonstrated that the loss of the response regulator ArcA distorts the correlation between transcription and translation by inhibiting the ribosome biosynthesis. This effect largely underlies the growth defect because it concurs with the effect of chloramphenicol, which impairs translation. Reduced transcription of ArcA-dependent ribosomal protein S1 appears to have a significant impact on ribosome assembly. We further show that the lowered translation efficiency is not accountable for the envelope defect, another major defect resulting from the ArcA loss. Overall, our results suggest that although the arcA mutation impairs growth through multi-fold complex impacts in physiology, the reduced translation efficacy appears to be a major cause for the phenotype, demonstrating that Arc is a primary system that coordinates proteomic resources with metabolism in S. oneidensis.
Funder
National Natural Science Foundation of China
Subject
Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献