Abstract
Terrestrial mud volcanoes (TMVs) are important natural sources of methane emission. The microorganisms inhabiting these environments remain largely unknown. We studied the phylogenetic composition and metabolic potential of the prokaryotic communities of TMVs located in the Taman Peninsula, Russia, using a metagenomic approach. One of the examined sites harbored a unique community with a high abundance of anaerobic methane-oxidizing archaea belonging to ANME-3 group (39% of all 16S rRNA gene reads). The high number of ANME-3 archaea was confirmed by qPCR, while the process of anaerobic methane oxidation was demonstrated by radioisotopic experiments. We recovered metagenome-assembled genomes (MAGs) of archaeal and bacterial community members and analyzed their metabolic capabilities. The ANME-3 MAG contained a complete set of genes for methanogenesis as well as of ribosomal RNA and did not encode proteins involved in dissimilatory nitrate or sulfate reduction. The presence of multiheme c-type cytochromes suggests that ANME-3 can couple methane oxidation with the reduction of metal oxides or with the interspecies electron transfer to a bacterial partner. The bacterial members of the community were mainly represented by autotrophic, nitrate-reducing, sulfur-oxidizing bacteria, as well as by fermentative microorganisms. This study extends the current knowledge of the phylogenetic and metabolic diversity of prokaryotes in TMVs and provides a first insight into the genomic features of ANME-3 archaea.
Funder
Russian Science Foundation
Ministry of Science and Higher Education of the Russian Federation
Subject
Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献