Abstract
The succinate-acetate permease (SatP) is an anion channel with six transmembrane domains. It forms different oligomers, especially hexamers in the detergent as well as in the membrane. Solid-state NMR studies of SatP were carried out successfully on SatP complexes by reconstructing the protein into liposomes or retaining the protein in the native membrane of E. coli., where it was expressed. The comparison of 13C-13C 2D correlation spectra between the two samples showed great similarity, opening the possibility to further study the acetate transport mechanism of SatP in its native membrane environment. Solid-state NMR studies also revealed small chemical shift differences of SatP in the two different membrane systems, indicating the importance of the lipid environment in determining the membrane protein structures and dynamics. Combining different 2D SSNMR spectra, chemical shift assignments were made on some sites, consistent with the helical structures in the transmembrane domains. In the end, we pointed out the limitation in the sensitivity for membrane proteins with such a size, and also indicated possible ways to overcome it.
Funder
Ministry of Science and Technology of the People's Republic of China
Shanghai Municipal People's Government
Subject
Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics