Explanation of Photon Navigation in the Mach-Zehnder Interferometer

Author:

Pons Dirk J.ORCID

Abstract

Photons in interferometers manifest the functional ability to simultaneously navigate both paths through the device, but eventually appear at only one outlet. How this relates to the physical behaviour of the particle is still ambiguous, even though mathematical representation of the problem is adequate. This paper applies a non-local hidden-variable (NLHV) solution, in the form of the Cordus theory, to explain photon path dilemmas in the Mach–Zehnder (MZ) interferometer. The findings suggest that the partial mirrors direct the two reactive ends of the Cordus photon structures to different legs of the apparatus, depending on the energisation state of the photon. Explanations are provided for a single photon in the interferometer in the default, open-path, and sample modes. The apparent intelligence in the system is not because the photon knows which path to take, but rather because the MZ interferometer is a finely-tuned photon-sorting device that auto-corrects for randomness in the frequency phase to direct the photon to a specific detector. The principles also explain other tunnelling phenomena involving barriers. Thus, navigation dilemmas in the MZ interferometer may be explained in terms of physical realism after all.

Publisher

MDPI AG

Subject

General Medicine

Reference21 articles.

1. Wave–particle duality: A conceptual solution from the cordus conjecture

2. What is a Photon? Foundations of Quantum Field Theory https://www.physics.usu.edu/torre/QFT/Lectures/QFT_text.pdf.

3. The Principles of Quantum Mechanics;Dirac,1930

4. A Physical Basis for Entanglement in a Non-Local Hidden Variable Theory

5. The Theory of the Universal Wave Function: The Many-Worlds interpretation of Quantum Mechanics;Everett,1973

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3