An Automatic Motion-Based Artifact Reduction Algorithm for fNIRS in Concurrent Functional Magnetic Resonance Imaging Studies (AMARA–fMRI)

Author:

Hocke Lia Maria12ORCID,Tong Yunjie3,Frederick Blaise deBonneval12

Affiliation:

1. McLean Imaging Center, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA

2. Department of Psychiatry, Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA

3. Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA

Abstract

Multimodal functional near-infrared spectroscopy–functional magnetic resonance imaging (fNIRS–fMRI) studies have been highly beneficial for both the fNIRS and fMRI field as, for example, they shed light on the underlying mechanism of each method. However, several noise sources exist in both methods. Motion artifact removal is an important preprocessing step in fNIRS analysis. Several manual motion–artifact removal methods have been developed which require time and are highly dependent on expertise. Only a few automatic methods have been proposed. AMARA (acceleration-based movement artifact reduction algorithm) is one of the most promising automatic methods and was originally tested in an fNIRS sleep study with long acquisition times (~8 h). However, it relies on accelerometry data, which is problematic when performing concurrent fNIRS–fMIRI experiments. Most accelerometers are not MR compatible, and in any case, existing datasets do not have this data. Here, we propose a new way to retrospectively determine acceleration data for motion correction methods, such as AMARA in multimodal fNIRS–fMRI studies. We do so by considering the individual slice stack acquisition times of simultaneous multislice (SMS) acquisition and reconstructing high-resolution motion traces from each slice stack time. We validated our method on 10 participants during a memory task (2- and 3-back) with 6 fNIRS channels over the prefrontal cortex (limited field of view with fMRI). We found that this motion correction significantly improved the detection of activation in deoxyhemoglobin and outperformed up-sampled motion traces. However, we found no improvement in oxyhemoglobin. Furthermore, our data show a high overlap with fMRI activation when considering activation in channels according to both deoxyhemoglobin and oxyhemoglobin.

Funder

NIH/NIA

NIH/NIHM

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Neuro-Eye: Decoding of High-Temporal Resolution Eye Movements via Functional Magnetic Resonance Imaging;2024 4th International Conference on Neural Networks, Information and Communication (NNICE);2024-01-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3