Biodiversity-Based Empirical Critical Loads of Nitrogen Deposition in the Athabasca Oil Sands Region

Author:

Vandinther Nicole1,Aherne Julian1

Affiliation:

1. School of Environment, Trent University, Peterborough, ON K9J 0G2, Canada

Abstract

Anthropogenic nitrogen (N) emissions can have considerable effects on terrestrial ecosystems, with chronic N deposition leading to changes in plant species composition. The Athabasca Oil Sands Region (AOSR) represents a large point source of N emissions, which has prompted concern for surrounding habitats. The objective of this study was to determine the relative importance of N deposition as a driver of plant species community composition against bioclimatic and soil chemical variables. Further, we sought to identify community thresholds in plant species composition across a N deposition gradient. This assessment was performed for 46 Jack pine (Pinus banksiana Lamb.)-dominant forest sites surrounding the AOSR spanning Alberta and Saskatchewan. In total, 35 environmental variables were evaluated using redundancy analysis (RDA), followed by gradient forest analysis applied to plant species abundance data. Soil chemical variables accounted for just over 26% of the total explainable variation in the dataset, followed by bioclimatic variables (19%) and deposition variables (5%), but joint effects between variables also explained a significant portion of the total variation (p < 0.001). Total deposited nitrogen (TDN), and sulphur (TDS) along with bioclimatic and soil chemical variables, were identified as important variables in gradient forest analysis. A single, definitive threshold across TDN was identified at approximately 5.6 kg N ha−1 yr−1 (while a TDS threshold was found at 14.4 kg S ha−1 yr−1). The TDN threshold range was associated primarily with changepoints for several vascular species (Pyrola asarifolia, Pyrola chlorantha, Cornus canadensis, and Arctostaphylos uva-ursi) and bryophyte and lichen species (Pleurozium schreberi, Vulpicida pinastri, and Dicranum polysetum). These results suggest that across Jack pine-dominant forests surrounding the AOSR, the biodiversity-based empirical critical load of nutrient N is 5.6 kg N ha−1 yr−1.

Funder

Environment and Climate Change Canada

Publisher

MDPI AG

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3