Isoenzymatic Pattern of Hydrogen Sulfide (H2S)-Generating L-Cysteine Desulfhydrase (LCD) in Arabidopsis thaliana Seedlings: Effect of Nitric Oxide (NO) and H2S

Author:

De La O-Sánchez Jorge1,Muñoz-Vargas María1,Palma José1ORCID,Corpas Francisco1ORCID

Affiliation:

1. Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), C/Profesor Albareda 1, 18008 Granada, Spain

Abstract

In higher plants, hydrogen sulfide (H2S) is a recognized signaling molecule that performs multiple regulatory functions. The enzyme L-cysteine desulfhydrase (LCD) catalyzes the conversion of L-cysteine (L-Cys) to pyruvate and ammonium with the concomitant generation of H₂S, and it is considered one of the main sources of H2S in plants. Using non-denaturing polyacrylamide gel electrophoresis (PAGE) in combination with a specific assay for LCD activity, this study aims to identify the potential LCD isozymes in wild-type Arabidopsis thaliana seedlings of 16 days old grown under in vitro conditions, and to evaluate the potential impact of nitric oxide (NO) and H2S on these LCD isozymes. For this purpose, an Atnoa1 mutant characterized to have a low endogenous NO content as well as the exogenous application of H2S were used. Five LCD isozymes were detected, with LCD IV being the isozyme that has the highest activity. However, the LCD V activity was the only one that was positively modulated in the Atnoa1 mutants and by exogenous H2S. To our knowledge, this is the first report showing the different LCD isozymes present in Arabidopsis seedlings and how their activity is affected by NO and H2S content.

Funder

Ministry of Science and Innovation

AEI

Junta de Andalucía

Publisher

MDPI AG

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3