Abstract
Legume cover crops in temperate cropping systems can fix substantial amounts of nitrogen (N) and reduce N fertiliser requirements for subsequent crops. However, little is known about potential biological N2 fixation by summer cover crop legumes in the short summer fallow in Mediterranean-type cropping systems. Six legume species (balansa clover, barrel medic, mung bean, sunn hemp, lablab and cowpea) were grown for 8–9 weeks in the field in semi-arid southern Australia during the summer fallow, and in a glasshouse experiment, to estimate N2 fixation using the 15N natural abundance method. Cowpea, sunn hemp and lablab produced 1.2–3.0 t ha−1 biomass in the field while balansa clover and barrel medic produced < 1.0 t ha−1. The percent of N derived from the atmosphere (%Ndfa) in the field ranged from 39% in barrel medic to 73% in sunn hemp, but only 15% (balansa clover) to 33% (sunn hemp) in the glasshouse experiment, likely due to higher soil mineral N availability in the glasshouse study. Biological N2 fixation of cowpea and sunn hemp in the field was 46–55 kg N ha−1, while N2 fixation in lablab and mung bean was lower (around 26 kg N ha−1). The N2 fixation in cowpea and sunn hemp of around 50 kg N ha−1 with supplementary irrigation in the field trial likely represents the upper limit of N contributions in the field in typically hot, dry summer conditions in Mediterranean-type climates. Given that any increase in summer cover crop biomass will have implications for water balances and subsequent cash crop growth, maximising N benefits of legume cover crops will rely on increasing the %Ndfa through improved rhizobium strains or inoculation technologies. This study provides the first known estimates of biological N2 fixation by legume cover crops in the summer fallow period in cropping systems in Mediterranean-type environments, providing a benchmark for further studies.
Funder
Cooperative Research Centre for High Performance Soils whose activities are funded by the Australian Government's Cooperative Research Centre Program.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献