Abstract
Nitrate concentration is variable in soils, so the absorbed N from roots in a high-nitrate site is recycled from shoots to the root parts in N-poor niche. In this report, the absorption, transport, and recycling of N derived from 15N-labeled nitrate were investigated with split-root systems of nodulated soybean. The NO3− accumulated in the root in 5 mM NO3− solution; however, it was not detected in the roots and nodules in an N-free pot, indicating that NO3− itself is not recycled from leaves to underground parts. The total amount of 15NO3− absorption from 2 to 4 days of the plant with the N-free opposite half-root accelerated by 40% compared with both half-roots that received NO3−. This result might be due to the compensation for the N demand under one half-root could absorb NO3−. About 2–3% of the absorbed 15N was recycled to the opposite half-root, irrespective of N-free or NO3− solution, suggesting that N recycling from leaves to the roots was not affected by the presence or absence of NO3−. Concentrations of asparagine increased in the half-roots supplied with NO3− but not in N-free half-roots, suggesting that asparagine may not be a systemic signal for N status.
Reference44 articles.
1. Baslam, M., Mitsui, T., Sueyoshi, K., and Ohyama, T. (2021). Recent advances in carbon and nitrogen metabolism in C3 plants. Int. J. Mol. Sci., 22.
2. Local and long-range signaling pathways regulating plant responses to nitrate;Forde;Annu. Rev. Plant Biol.,2002
3. Nitrate transport and signaling;Miller;J. Exp. Bot.,2007
4. Buchanan, B., Gruissem, W., and Jones, R. (2000). Biochemistry and Molecular Biology of Plants, American Society of Plant Physiologist.
5. Exploration of the nitrogen transport system of a nodulated legume using 15N;Oghoghorie;Planta,1972
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献