Short-Term Effect of Nitrogen Fertilization on Carbon Mineralization during Corn Residue Decomposition in Soil

Author:

Jesmin TanjilaORCID,Mitchell Dakota T.,Mulvaney Richard L.

Abstract

The effect of N fertilization on residue decomposition has been studied extensively; however, contrasting results reflect differences in residue quality, the form of N applied, and the type of soil studied. A 60 d laboratory incubation experiment was conducted to ascertain the effect of synthetic N addition on the decomposition of two corn (Zea mays L.) stover mixtures differing in C:N ratio by continuous monitoring of CO2 emissions and periodic measurement of microbial biomass and enzyme activities involved in C and N cycling. Cumulative CO2 production was greater for the high than low N residue treatment, and was significantly increased by the addition of exogenous N. The latter effect was prominent during the first month of incubation, whereas N-treated soils produced less CO2 in the second month, as would be expected due to more rapid substrate depletion from microbial C utilization previously enhanced by greater N availability. The stimulatory effect of exogenous N was verified with respect to active biomass, microbial biomass C and N, and cellulase and protease activities, all of which were significantly correlated with cumulative CO2 production. Intensive N fertilization in modern corn production increases the input of residues but is not conducive to soil C sequestration.

Publisher

MDPI AG

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3