Evaluation of Alkaline Hydrolyzable Organic Nitrogen as an Index of Nitrogen Mineralization Potential of Some Coastal Savannah Soils of Ghana

Author:

Dodor Daniel E.ORCID,Kamara Mohamed S.,Asamoah-Bediako Abena,Adiku Samuel G. K.,MacCarthy Dilys S.ORCID,Kumahor Samuel K.,Neina Dora

Abstract

Numerous biological and chemical methods have been proposed over the years for estimating the nitrogen (N) mineralization capacity of soils; however, none of them has found general use in soil fertility testing. The efficacy of a recently proposed alkaline hydrolysis method for assessing N availability in soils compared with the standard long-term incubation technique for determining potentially available N was evaluated. The nitrogen mineralization of 12 surface soils incubated under aerobic conditions at 25 °C for 26 weeks was determined. Field-moist soils were direct-steam distilled with 1 M KOH or 1 M NaOH; the NH3 released was trapped in boric acid, and its concentration was determined successively every 5 min for 40 min. The cumulative N mineralized or hydrolyzed was fitted to the first-order exponential equation to determine the potentially mineralizable N (No) and an analogous “potentially hydrolyzable N (Nmax)” for the soils. The flush of CO2 (fCO2) following the rewetting and incubation of air-dried soils under aerobic conditions for 3 days was also determined. The results showed that the Nmax values differed considerably among the soils, indicating differences in the chemical nature and reactivity of the organic N content of the soils, and were significantly correlated with No and fCO2 values. The estimated Nmax and No values ranged from 105 to 371 mg N kg−1 and 121 to 292 mg kg−1, respectively. Based on the simple and inexpensive nature of the alkaline hydrolysis procedure, the reduction in the incubation time required to obtain No (months to minutes), and the strong association between Nmax and No, we concluded that Nmax is a good predictor of the biologically discrete and quantifiable labile pool of mineralizable soil organic N (ON), and the use of the alkaline hydrolyzable ON as a predictor of No merits consideration for routine use in soil testing laboratories for estimating the N-supplying capacity of soils.

Publisher

MDPI AG

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3