Calibration of Co-Located Identical PAR Sensors Using Wireless Sensor Networks and Characterization of the In Situ fPAR Variability in a Tropical Dry Forest

Author:

Sanchez-Azofeifa ArturoORCID,Sharp Iain,Green Paul D.ORCID,Nightingale Joanne

Abstract

The fraction of photosynthetic active radiation (fPAR) attempts to quantify the amount of enery that is absorbed by vegetation for use in photosynthesis. Despite the importance of fPAR, there has been little research into how fPAR may change with biome and latitude, or the extent and number of ground networks required to validate satellite products. This study provides the first attempt to quantify the variability and uncertainties related to in-situ 2-flux fPAR estimation within a tropical dry forest (TDF) via co-located sensors. Using the wireless sensor network (WSN) at the Santa Rosa National Park Environmental Monitoring Super Site (Guanacaste, Costa Rica), this study analyzes the 2-flux fPAR response to seasonal, environmental, and meteorological influences over a period of five years (2013–2017). Using statistical tests on the distribution of fPAR measurements throughout the days and seasons based on the sky condition, solar zenith angle, and wind-speed, we determine which conditions reduce variability, and their relative impact on in-situ fPAR estimation. Additionally, using a generalized linear mixed effects model, we determine the relative impact of the factors above, as well as soil moisture on the prediction of fPAR. Our findings suggest that broadleaf deciduous forests, diffuse light conditions, and low wind patterns reduce variability in fPAR, whereas higher winds and direct sunlight increase variability between co-located sensors. The co-located sensors used in this study were found to agree within uncertanties; however, this uncertainty is dominated by the sensor drift term, requiring routine recalibration of the sensor to remain within a defined criteria. We found that for the Apogee SQ-110 sensor using the manufacturer calibration, recalibration around every 4 years is needed to ensure that it remains within the 10% global climate observation system (GCOS) requirement. We finally also find that soil moisture is a significant predictor of the distribution and magnitude of fPAR, and particularly impacts the onset of senescence for TDFs.

Funder

Natural Sciences and Engineering Research Council

Inter-American Institute

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3