Real-Time Ground-Level Building Damage Detection Based on Lightweight and Accurate YOLOv5 Using Terrestrial Images

Author:

Liu Chaoxian,Sui Haigang,Wang Jianxun,Ni Zixuan,Ge Liang

Abstract

Real-time building damage detection effectively improves the timeliness of post-earthquake assessments. In recent years, terrestrial images from smartphones or cameras have become a rich source of disaster information that may be useful in assessing building damage at a lower cost. In this study, we present an efficient method of building damage detection based on terrestrial images in combination with an improved YOLOv5. We compiled a Ground-level Detection in Building Damage Assessment (GDBDA) dataset consisting of terrestrial images with annotations of damage types, including debris, collapse, spalling, and cracks. A lightweight and accurate YOLOv5 (LA-YOLOv5) model was used to optimize the detection efficiency and accuracy. In particular, a lightweight Ghost bottleneck was added to the backbone and neck modules of the YOLOv5 model, with the aim to reduce the model size. A Convolutional Block Attention Module (CBAM) was added to the backbone module to enhance the damage recognition effect. In addition, regarding the scale difference of building damage, the Bi-Directional Feature Pyramid Network (Bi-FPN) for multi-scale feature fusion was used in the neck module to aggregate features with different damage types. Moreover, depthwise separable convolution (DSCONV) was used in the neck module to further compress the parameters. Based on our GDBDA dataset, the proposed method not only achieved detection accuracy above 90% for different damage targets, but also had the smallest weight size and fastest detection speed, which improved by about 64% and 24%, respectively. The model performed well on datasets from different regions. The overall results indicate that the proposed model realizes rapid and accurate damage detection, and meets the requirement of lightweight embedding in the future.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3