Seeded Classification of Satellite Image Time Series with Lower-Bounded Dynamic Time Warping

Author:

Zhang ZhengORCID,Tang Ping,Hu Changmiao,Liu ZhiqiangORCID,Zhang WeixiongORCID,Tang Liang

Abstract

Satellite Image Time Series (SITS) record the continuous temporal behavior of land cover types and thus provide a new perspective for finer-grained land cover classification compared with the usual spectral and spatial information contained in a static image. In addition, SITS data is becoming more accessible in recent years due to newly launched satellites and accumulated historical data. However, the lack of labeled training samples limits the exploration of SITS data, especially with sophisticated methods. Even with a straightforward classifier, such as k-nearest neighbor, the accuracy and efficiency of the SITS similarity measure is also a pending problem. In this paper, we propose SKNN-LB-DTW, a seeded SITS classification method based on lower-bounded Dynamic Time Warping (DTW). The word “seeded” indicates that only a few labeled samples are required, and this is not only because of the lack of labeled samples but also because of our aim to explore the rich information contained in SITS, rather than letting training samples dominate the classification results. We use a combination of cascading lower bounds and early abandoning of DTW as an accurate yet efficient similarity measure for large scale tasks. The experimental results on two real SITS datasets demonstrate the utility of the proposed SKNN-LB-DTW, which could become an effective solution for SITS classification when the amount of unlabeled SITS data far exceeds the labeled data.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3