Mapping Spatiotemporal Changes in Forest Type and Aboveground Biomass from Landsat Long-Term Time-Series Analysis—A Case Study from Yaoluoping National Nature Reserve, Anhui Province of Eastern China

Author:

Yang BoxiangORCID,Zhang Yali,Mao Xupeng,Lv Yingying,Shi Fang,Li MingshiORCID

Abstract

A natural reserve’s forest is an important base for promoting natural education, scientific research, biodiversity conservation and carbon accounting. Dynamic monitoring of the forest type and forest aboveground biomass (AGB) in a nature reserve is an important foundation for assessing the forest succession stage and trend. Based on the Landsat images covering the National Nature Reserve of Yaoluoping in Anhui province spanning from 1987 to 2020, a total of 42 Landsat scenes, the forest cover product set was first developed by using the well-established vegetation change tracker (VCT) model. On this basis, a new vegetation index, NDVI_DR, which considers the phenological characteristics of different forest types, was proposed to distinguish coniferous forest from broad-leaved forest. Next, multiple modeling factors, including remote sensing spectral signatures, vegetation indices, textural measures derived from gray level co-occurrence matrix and wavelet analysis and topographic attributes, were compiled to model the AGB in 2011 by forest type separately by using the stochastic gradient boosting (SGB) algorithm. Then, using the 2011 Landsat image as the base, all the Landsat images in the other years involved in the modelling were relatively normalized by using the weighted invariant pixels (WIP) method, followed by an extrapolation of the 2011 AGB model to other years to create a time-series of AGB. The results showed that the overall accuracy of the VCT-based forest classification products was over 90%. The annual forest type classifications derived from NDVI_DR thresholding gained an overall accuracy above 92%, with a kappa coefficient above 0.8. The 2011 forest-type-dependent SGB-based AGB estimation model achieved an independent validation R2 at 0.63 and an RMSE at 11.18 t/ha for broad-leaved forest, and 0.61 and 14.26 t/ha for coniferous forest. The mapped time-series of AGB showed a gradual increasing trend over the past three decades. The driving factors responsible for the observed forest cover and AGB changes were analyzed to provide references for reasonable protection and development. The proposed methodology is a reliable tool for evaluating the management status, which can be extended to other similar regions.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3