An Integrated Algorithm for Extracting Terrain Feature-Point Clusters Based on DEM Data

Author:

Hu JinlongORCID,Luo Mingliang,Bai Leichao,Duan Jinliang,Yu Bing

Abstract

Terrain feature points, such as the peaks and saddles, are the basic framework of surface topography and its undulations, which significantly affect the spatial distribution of surface topography. In the past, terrain feature points were extracted separately for each type, while the internal connections between the terrain feature points were ignored. Therefore, this work proposes an integrated algorithm for extracting terrain feature-point clusters, including the peaks, saddles and runoff nodes, based on the DEM data. This method includes two main processes: positive terrain-constrained ridgeline extraction and terrain feature-point cluster extraction. Firstly, a threshold determination method of flow accumulation in the hydrological analysis is proposed by combining morphological characteristics with runoff simulation, and the ridgelines are extracted based on this threshold. Subsequently, the peaks and their control areas are extracted by space segmentation. Meanwhile, the saddles and runoff nodes are obtained by spatial intersection. Finally, the integrated terrain feature-point clusters are obtained by merging the three extracted terrain feature points. This method was experimented with in the six typical sample areas in Shaanxi Province and verified its results by contour lines and optical images. It shows that the spatial positions of the extracted terrain feature clusters are accurate, and the coupling relationships are great. Finally, the experiments show that the statistical attributes of point clusters and their spatial distribution trends have an obvious correlation with geomorphic types and geomorphic zoning, which can provide an important reference for geomorphic zoning and mapping.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3