GPU-Accelerated Computation of EM Scattering of a Time-Evolving Oceanic Surface Model II: EM Scattering of Actual Oceanic Surface

Author:

Linghu LongxiangORCID,Wu Jiaji,Wu ZhensenORCID,Jeon Gwanggil,Wu Tao

Abstract

Based on marine environmental factors of different sea areas, a high-performance sea clutter time series modeling algorithm for the real sea surface is developed to study the amplitude mean and Doppler spectrum characteristics of sea clutter. The European Centre for Medium-Range Weather Forecasts (ECMWF) data set (ERA-Interim) and ESA’s soil moisture and ocean salinity (SMOS) data set are utilized to establish databases of different marine environmental factors. Combined with the mixed spectrum model, the geometric fine structure of wind-driven sea surface with swell superposition is established by using the double-superposition method (DSM) and comprehensively considering small-scale capillary ripples, large-scale gravity waves and swell. A triangle facet-based sea clutter series modeling algorithm is developed, in which the quasi-specular scattering based on a triangle and the scattering based on gravity wave modulation capillary spectrum are calculated, respectively, and compared with the measured results. For high-resolution radar, dynamic sea surface modeling and sea clutter calculation are very time consuming. In this paper, the Tesla K80 GPU manufactured by NVIDIA in Santa Clara, Computed Unified Device architecture (CUDA) high-performance parallel technology and some optimization strategies are adopted to improve the efficiency of sea clutter modeling. The results can be used to analyze the distribution characteristics of marine factors, the average amplitude and Doppler characteristics of sea clutter in different sea areas.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3