Insights into Chemical Structure-Based Modeling for New Sweetener Discovery

Author:

Tang Ning1ORCID

Affiliation:

1. Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China

Abstract

The search for novel, natural, high-sweetness, low-calorie sweeteners remains open and challenging. In the present study, the structure-based machine learning modeling and sweetness recognition mechanism were investigated to assist this process. It was found that whether or not a compound was sweet was closely related to molecular connectivity and composition (the number of hydrogen bond acceptors and donors), tpsaEfficiency, structural complexity, and shape (nAtomP and Fsp3). While the relative sweetness of sweet compounds was more determined by the molecular properties (tpsaEfficiency and Log P), structural complexity and composition (nAtomP and ATSm 1). The built machine learning models exhibited very good performance for classifying the sweet/non-sweet compounds and predicting the relative sweetness of the compounds. Moreover, a specific binding pocket was found for sweet compounds, and the sweet compounds mainly interacted with the VFT domain of the T1R2-T1R3 through hydrogen bonds. In addition, the results indicated that among the sweet compounds, those that were sweeter bound to the VFT domain stronger than those that had low sweetness. This study provides very useful information for developing new sweeteners.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3