Mechanism of Reduced Glutathione Induced Lysozyme Defolding and Molecular Self-Assembly

Author:

Guo Dashan1,Hou Yuwei1,Liang Hongshan2,Han Lingyu3,Li Bin2,Zhou Bin1ORCID

Affiliation:

1. Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, School of Biological Engineering and Food, Hubei University of Technology, Wuhan 430068, China

2. College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China

3. Key Lab of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China

Abstract

The distinctive assembly behaviors of lysozyme (Lys) feature prominently in food, materials, biomedicine, and other fields and have intrigued many scholars. Although our previous work suggested that reduced glutathione (GSH) could induce lysozyme to form interfacial films at the air/water interface, the underlying mechanism is still obscure. In the present study, the effects of GSH on the disulfide bond and protein conformation of lysozyme were investigated by fluorescence spectroscopy, circular dichroism spectroscopy, and infrared spectroscopy. The findings demonstrated that GSH was able to break the disulfide bond in lysozyme molecules through the sulfhydryl/disulfide bond exchange reaction, thereby unraveling the lysozyme. The β-sheet structure of lysozyme expanded significantly, while the contents of α-helix and β-turn decreased. Furthermore, the interfacial tension and morphology analysis supported that the unfolded lysozyme tended to arrange macroscopic interfacial films at the air/water interface. It was found that pH and GSH concentrations had an impact on the aforementioned processes, with higher pH or GSH levels having a positive effect. This paper on the exploration of the mechanism of GSH-induced lysozyme interface assembly and the development of lysozyme-based green coatings has better instructive significance.

Funder

National Natural Science Foundation of China

Natural science foundation of Hubei province

Leading Plan of Green Industry of Hubei University of Technology

Natural science foundation of Liaoning province

Dalian high-level talent innovation, scientific and technological talent entrepreneurship, and innovation team support projects in key fields

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3