Preparation, Structural Characterization, and Stability of Low-Molecular-Weight Collagen Peptides–Calcium Chelate Derived from Tuna Bones

Author:

Zhong Yaqi12,Zhou Yufang23ORCID,Ma Mingzhu23,Zhao Yadong1,Xiang Xingwei4,Shu Conghan12,Zheng Bin1

Affiliation:

1. School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316000, China

2. Zhejiang Marine Development Research Institute, Zhoushan 316000, China

3. Science and Technology Development Center, Zhejiang Marine Development Research Institute, Zhoushan 316000, China

4. College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China

Abstract

This study was conducted to prepare calcium chelate of low-molecular-weight tuna bone collagen peptides (TBCPLMW) with a high chelation rate and to identify its structural characteristics and stability. The optimum conditions for calcium chelation of TBCPLMW (TBCPLMW-Ca) were determined through single-factor experiments and response surface methodology, and the calcium-chelating capacity reached over 90% under the optimal conditions. The amino acid compositions implied that Asp and Glu played important roles in the formation of TBCPLMW-Ca. Structural characterizations determined via spectroscopic analyses revealed that functional groups such as -COO−, N-H, C=O, and C-O were involved in forming TBCPLMW-Ca. The particle size distributions and scanning electron microscopy results revealed that folding and aggregation of peptides were found in the chelate. Stability studies showed that TBCPLMW-Ca was relatively stable under thermal processing and more pronounced changes have been observed in simulated gastric digestion, presumably the acidic environment was the main factor causing the dissociation of the TBCPLMW-Ca. The results of this study provide a scientific basis for the preparation of a novel calcium supplement and is beneficial for comprehensive utilization of tuna bones.

Funder

Zhejiang Provincial Natural Science Foundation of China

Zhoushan Science and Technology Project of China

Key Laboratory of Marine Fishery Resources Exploitation and Utilization of Zhejiang Province

Zhejiang Provincial Key Research and Development Project of China

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3