Antioxidant Activities of Konjac Glucomannan Hydrolysates of Different Molecular Weights at Different Values of pH

Author:

Tripetch Phattanit1,Lekhavat Supaporn2,Devahastin Sakamon34ORCID,Chiewchan Naphaporn3,Borompichaichartkul Chaleeda1ORCID

Affiliation:

1. Department of Food Technology, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand

2. Thailand Institute of Scientific and Technological Research, 35 Mu 3 Technopolis, Khlong Ha, Khlong Luang, Pathum Thani 12120, Thailand

3. Advanced Food Processing Research Laboratory, Department of Food Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, 126 Pracha U-Tid Road, Tungkru, Bangkok 10140, Thailand

4. The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok 10300, Thailand

Abstract

Konjac glucomannan (KGM) is a high-molecular-weight polysaccharide that was originally extracted from the corms (underground storage organs) of Amorphophallus konjac. KGM and its oligomers have been reported as dietary fibers that exhibit an array of health benefits. The depolymerization of KGM via enzymatic hydrolysis at different conditions gives products of low viscosity and can be used for coating materials in microencapsulation. In the present study, konjac glucomannan hydrolysates (KGMHs) were produced by enzymatic hydrolysis using commercial mannanase at pH 4.5 at 70 °C for 5–120 min, then KGMHs’ molecular weight (Mw), Degree of Polymerization (DP) and their bioactivities were determined. A longer hydrolysis time resulted in KGMH of a lower DP. Oligoglucomannans (Mw < 10,000) could be obtained after hydrolysis for 20 min. The DP of KGMH rapidly decreased during an early stage of the hydrolysis (first 40 min); DP reached around 7 at the end of the hydrolysis. Antioxidant activities were determined by the DPPH radical scavenging and FRAP assays of KGMHs prepared at pH 4.5 and evaluated at pH 2.0–8.0 depending on pH. KGMH having lower Mw exhibited higher antioxidant activities. KGMHs having the smallest molecular weight (Mw = 419) exhibited the highest DPPH radical scavenging activity. Mw and pH have a greater impact on KGMHs’ bioactivities which can be useful information for KGMHs as functional ingredients.

Funder

Second Century Fund

Chulalongkorn University

Thailand Institute of Scientific and Technological Research

National Science and Technology Development Agency

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3