A Turn-Off Fluorescent Biomimetic Sensor Based on a Molecularly Imprinted Polymer-Coated Amino-Functionalized Zirconium (IV) Metal–Organic Framework for the Ultrasensitive and Selective Detection of Trace Oxytetracycline in Milk

Author:

Wang Xiaohui1,Liu Chang2,Cao Yichuan1,Cai Lin1,Wang Haiyang1,Fang Guozhen1

Affiliation:

1. State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China

2. School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China

Abstract

Developing sensitive and effective methods to monitor oxytetracycline residues in food is of great significance for maintaining public health. Herein, a fluorescent sensor (NH2-UIO-66 (Zr)@MIP) based on a molecularly imprinted polymer-coated amino-functionalized zirconium (IV) metal–organic framework was successfully constructed and first used for the ultrasensitive determination of oxytetracycline. NH2-UIO-66 (Zr), with a maximum emission wavelength of 455 nm under 350 nm excitation, was prepared using a microwave-assisted heating method. The NH2-UIO-66 (Zr)@MIP sensor with specific recognition sites for oxytetracycline was then acquired by modifying a molecularly imprinted polymer on the surface of NH2-UIO-66 (Zr). The introduction of NH2-UIO-66 (Zr) as both a signal tag and supporter can strengthen the sensitivity of the fluorescence sensor. Thanks to the combination of the unique characteristics of the molecularly imprinted polymer and NH2-UIO-66 (Zr), the prepared sensor not only exhibited a sensitive fluorescence response, specific identification capabilities and a high selectivity for oxytetracycline, but also showed good fluorescence stability, satisfactory precision and reproducibility. The fabricated sensor displayed a fluorescent linear quenching in the OTC concentration range of 0.05–40 μg mL−1, with a detection limit of 0.012 μg mL−1. More importantly, the fluorescence sensor was finally applied for the detection of oxytetracycline in milk, and the results were comparable to those obtained using the HPLC approach. Hence, the NH2-UIO-66 (Zr)@MIP sensor possesses great application potential for the accurate evaluation of trace oxytetracycline in dairy products.

Funder

The Project Program of Key Laboratory of Tianjin Key Laboratory of Food Quality and Health, China

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3