An Efficient Prephenate Dehydrogenase Gene for the Biosynthesis of L-tyrosine: Gene Mining, Sequence Analysis, and Expression Optimization

Author:

Ji Anying123,Bao Pengfei123,Ma Aimin123ORCID,Wei Xuetuan123

Affiliation:

1. State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China

2. Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China

3. Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China

Abstract

L-tyrosine is a key precursor for synthesis of various functional substances, but the microbial production of L-tyrosine faces huge challenges. The development of new microbial chassis cell and gene resource is especially important for the biosynthesis of L-tyrosine. In this study, the optimal host strain Bacillus amyloliquefaciens HZ-12 was firstly selected by detecting the production capacity of L-tyrosine. Subsequently, the recombinant expression of 15 prephenate dehydrogenase genes led to the discovery of the best gene, Bao-tyrA from B. amyloliquefaciens HZ-12. After the overexpression of Bao-tyrA, the L-tyrosine yield of the recombinant strain HZ/P43-Bao-tyrA reach 411 mg/L, increased by 42% compared with the control strain (HZ/pHY300PLK). Moreover, the nucleic acid sequence and deduced amino acid sequence of the gene Bao-tyrA were analyzed, and their conservative sites and catalytic mechanisms were proposed. Finally, the expression of Bao-tyrA was regulated through a promoter and 5′-UTR sequence to obtain the optimal expression elements. Thereby, the maximum L-tyrosine yield of 475 mg/L was obtained from HZ/P43-UTR3-Bao-tyrA. B. amyloliquefaciens was applied for the first time to produce L-tyrosine, and the optimal prephenate dehydrogenase gene Bao-tyrA and corresponding expression elements were obtained. This study provides new microbial host and gene resource for the construction of efficient L-tyrosine chassis cells, and also lays a solid foundation for the production of various functional tyrosine derivatives.

Funder

the National Natural Science Foundation of China

the National Key Research and Development Program of China

the Key Research and Development Program of Hubei Province

the HZAU-AGIS Cooperation Fund

the Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3