Electrochemical Sensor Based on Laser-Induced Graphene for Carbendazim Detection in Water

Author:

Wang Li1,Li Mengyue1,Li Bo1,Wang Min1,Zhao Hua1,Zhao Fengnian1ORCID

Affiliation:

1. College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China

Abstract

Carbendazim (CBZ) abuse can lead to pesticide residues, which may threaten the environment and human health. In this paper, a portable three-electrode sensor based on laser-induced graphene (LIG) was proposed for the electrochemical detection of CBZ. Compared with the traditional preparation method of graphene, LIG is prepared by exposing the polyimide film to a laser, which is easily produced and patterned. To enhance the sensitivity, platinum nanoparticles (PtNPs) were electrodeposited on the surface of LIG. Under optimal conditions, our prepared sensor (LIG/Pt) has a good linear relationship with CBZ concentration in the range of 1–40 μM, with a low detection limit of 0.67 μM. Further, the sensor shows good recovery rates for the detection of CBZ in wastewater, which provides a fast and reliable method for real-time analysis of CBZ residues in water samples.

Funder

National Natural Science Foundation of China

Research Foundation for Youth Scholars of Beijing Technology and Business University

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3