Structural Characteristics and Immunomodulatory Effects of Melanoidins from Black Garlic

Author:

Song Xiwang1,Xue Liangyu1,Geng Xiaoyuan1,Wu Jianfu1,Wu Tao1ORCID,Zhang Min2

Affiliation:

1. State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China

2. China-Russia Agricultural Products Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300384, China

Abstract

Melanoidins are considered to have several biological activities. In this study, black garlic melanoidins (MLDs) were collected using ethanol solution extraction; 0%, 20%, and 40% ethanol solutions were used for chromatography. Three kinds of melanoidins were produced by macroporous resin, named MLD-0, MLD-20, and MLD-40. The molecular weight was determined, and the infrared and microscopic structures were studied. In addition, Balb/c mice were induced with cyclophosphamide (CTX) to establish an immune deficiency model to evaluate the immune efficacy of black garlic melanoidins (MLDs). The results showed that MLDs restored the proliferation and phagocytosis ability of macrophages, and the proliferation activity of B lymphocytes in the MD group was 63.32% (♀) and 58.11% (♂) higher than that in the CTX group, respectively. In addition, MLDs alleviated the abnormal expression of serum factors such as IFN-γ, IL-10, and TNF-α. 16SrDNA sequencing of intestinal fecal samples of mice showed that MLDs changed the structure and quantity of intestinal flora, and especially that the relative abundance of Bacteroidaceae was significantly increased. The relative abundance of Staphylococcaceae was significantly reduced. These results showed that MLDs improved the diversity of intestinal flora in mice, and improved the adverse state of immune organs and immune cells. The experiments confirm that black garlic melanoidins have potential value in immune activity, which provides an important basis for the development and utilization of melioidosis.

Funder

Tianjin “131” Innovative Talent Team Project

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3