A Novel Edible Coating Produced from a Wheat Gluten, Pistacia vera L. Resin, and Essential Oil Blend: Antimicrobial Effects and Sensory Properties on Chicken Breast Fillets

Author:

Barazi Aykut Önder1ORCID,Mehmetoğlu Arzu Çağrı2ORCID,Erkmen Osman3ORCID

Affiliation:

1. Food Engineering Department, Engineering Faculty, Gaziantep University, Gaziantep 27310, Turkey

2. Food Engineering Department, Faculty of Engineering, Sakarya University, Sakarya 54187, Turkey

3. Department of Nutrition and Dietetics, Faculty of Health Sciences, Istanbul Arel University, Istanbul 34440, Turkey

Abstract

Antimicrobial edible coatings can eliminate the risk of pathogen contamination on the surface of poultry products during storage. In this study, an edible coating (EC) based on wheat gluten, Pistacia vera L. tree resin (PVR), and the essential oil (EO) of PVR was applied on chicken breast fillets (CBF) by a dipping method to prevent the growth of Salmonella Typhimurium and Listeria monocytogenes. The samples were packed in foam trays wrapped with low-density polyethylene stretch film and stored at 8 °C for 12 days to observe the antimicrobial effects and sensory properties. The total bacteria count (TBC), L. monocytogenes, and S. Typhimurium were recorded during storage. The samples coated with EC, containing 0.5, 1, 1.5, and 2% v/v EO (ECEO), showed significant decreases in microbial growth compared to the control samples. The growth of TBC, L. monocytogenes, and S. Typhimurium was suppressed by 4.6, 3.2, and 1.6 logs, respectively, at the end of 12 days on the samples coated with ECEO (2%) compared to the uncoated controls (p < 0.05). Coating with ECEO (2%) also preserved the appearance, smell, and general acceptance parameters better than uncoated raw chicken (p < 0.05) on the fifth day of storage. In grilled chicken samples, ECEO (2%) did not significantly change the appearance, smell, and texture (p > 0.05) but increased the taste and general acceptance scores. Therefore, ECEO (2%) can be a feasible and reliable alternative to preserve CBFs without adversely affecting their sensory properties.

Funder

Gaziantep Üniversitesi (BAP MF 14.28)/Gaziantep University Scientific Research Projects Governing Unit

Gaziantep University Scientific Research Projects Governing Unit

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3