First Investigation of the Physiological Distribution of Legacy and Emerging Perfluoroalkyl Substances in Raw Bovine Milk According to the Component Fraction

Author:

Draghi Susanna1ORCID,Pavlovic Radmila12ORCID,Pellegrini Alberto3,Fidani Marco3,Riva Federica1ORCID,Brecchia Gabriele1ORCID,Agradi Stella1ORCID,Arioli Francesco1ORCID,Vigo Daniele1ORCID,Di Cesare Federica1ORCID,Curone Giulio1ORCID

Affiliation:

1. Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy

2. Proteomics and Metabolomics Facility (ProMeFa), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy

3. UNIRELAB Srl, Via Gramsci 70, 20019 Settimo Milanese, Italy

Abstract

Bovine milk is a pillar of the human diet and plays a key role in the nutrition of infants. Perfluoroalkyl substances (PFASs) are well-recognized highly stable organic compounds that are able to pollute ecosystems persistently and threaten both human and animal health. The study aimed to analyze the distribution of 14 PFASs within the milk matrix by comparing their content in whole milk, and its skimmed and creamed fractions. Raw milk samples were individually collected from 23 healthy cows (10 primiparous and 13 multiparous) reared on a farm in Northern Italy not surrounded by known point sources of PFASs. Each sample was fractioned in whole, skim, and cream components to undergo PFAS analysis using liquid chromatography–high-resolution mass spectrometry. All samples contained at least one PFAS, with perfluorobutanoic acid (PFBA) being the primary contaminant in all three fractions, followed by perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA). PFOS was shown to be significantly (p < 0.001) more concentrated in cream than in raw and skimmed milk. Multiparous cows showed a higher frequency of positive samples in all analyzed fractions. Further research is necessary to assess the risk of dairy diets and high-fat dairy products and to investigate the toxicological effects of PFASs on cattle, even in environments without known PFAS sources.

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3