Time-Series Sensory Analysis Provided Important TI Parameters for Masking the Beany Flavor of Soymilk

Author:

Masuda Miyu1,Terada Yuko1ORCID,Tsuji Ryoki1,Nakano Shogo1ORCID,Ito Keisuke1

Affiliation:

1. Department of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan

Abstract

The aim of this study is to provide a new perspective on the development of masking agents by examining the application of their time-series sensory profiles. The analysis of the relationship between 14 time-intensity (TI) parameters and the beany flavor masking ability of 100 flavoring materials indicate that the values of AreaInc, DurDec, and AreaDec, TI parameters related to the flavor release in the increasing and decreasing phases, were significantly higher in the top 10 masking score materials than in the bottom 10 materials. In addition to individual analysis, machine learning analysis, which can derive complex rules from large amounts of data, was performed. Machine learning-based principal component analysis and cluster analysis of the flavoring materials presented AreaInc and AreaDec as TI parameters contributing to the classification of flavor materials and their masking ability. AreaDec was suggested to be particularly important for the beany flavor masking in the two different analyses: an effective masking can be achieved by focusing on the TI profiles of flavor materials. This study proposed that time-series profiles, which are mainly used for the understanding of the sensory characteristics of foods, can be applied to the development of masking agents.

Funder

Japan Society for the Promotion of Science

Fuji Foundation for Protein Research

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3