Dynamic Modulation of SO2 Atmosphere for Enhanced Fresh-Keeping of Grapes Using a Novel Starch-Based Biodegradable Foam Packaging

Author:

Mai Shihua1,Ma Yue1,Liu Hongsheng12ORCID,Li Chao1,Song Yuqing1,Hu Kaizhen1,Chen Xinyan1,Chen Ying34,Zou Wei1

Affiliation:

1. School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China

2. Sino-Singapore International Joint Research Institute, Guangzhou 510663, China

3. School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China

4. Department of Food Science and Technology, National University of Singapore, Science Drive 2, Singapore 117542, Singapore

Abstract

To improve the fresh-keeping of highly perishable fruits with high commercial value, a novel starch-based foam packaging material was developed in this study. The foam incorporated the antiseptic ingredient Na2S2O5, which chemically interacted with environmental moisture to release SO2 as an antifungal agent. Scanning electron microscopy (SEM), moisture absorption and mechanical measurements were used to characterize the unique sandwich-like inner structure of the foam which allowed for the modulable release of SO2. The starch-based foam exhibited sufficient resilience (~100%) to provide ideal cushioning to prevent physical damage to fresh fruits during transportation. When 25 g/m2 of Na2S2O5 was applied, the foam stably released over 100 ppm SO2 and demonstrated satisfactory antifungal performance (inhibition over 60%) in terms of maintaining the appearance and nutritional values (such as soluble solids 14 vs. 11%, total acidity 0.45 vs. 0.30%, and Vitamin C 3.4 vs. 2.5 mg/100 g) of fresh grapes during a 21 day storage period. Additionally, the residual SO2 (14 mg/kg) also meets the safety limits (<30 mg/kg). These research findings suggest great potential for the utilization of this novel foam in the food industry.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3