Affiliation:
1. Hubei Engineering Research Center for Agricultural Products Irradiation, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, 5th Nanhu Avenue, Wuhan 430064, China
2. Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China
3. Key Laboratory of Catalysis and Energy Materials Chemistry of Education, Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
Abstract
In this study, a composite film was prepared using irradiated chitosan, lysozyme, and carrageenan for crayfish preservation. First, the chitosan was degraded by gamma rays, with the best antimicrobial properties being found at 100 KGy. By using the response surface method, the components of the composite film were irradiated chitosan (CS) at 0.016 g/mL, lysozyme (LM) at 0.0015 g/mL, and carrageenan (CA) at 0.002 g/mL. When compared to the natural chitosan film, the Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) results demonstrated that the chemical properties of the composite film did not change with the addition of LM and CA, while the physical and antibacterial properties increased, including tensile strength (16.87 → 20.28 N), hydrophobicity (67.9 → 86.3°), and oxygen permeability (31.66 → 24.31 m3∙um/m2∙day∙kPa). Moreover, the antibacterial activity of the films increased with the addition of LM and CA, especially for Shewanella putrefaciens: the zone of inhibition (mm) of CS, CS/LM, and CS/LM/CA was 9.97 ± 0.29, 14.32 ± 0.31, and 14.78 ± 0.21, respectively. Finally, the CS/LM/CA film could preserve crayfish for 10 days at 4 °C, whereas the polyethylene (PE) film could only preserve them for 6 days. Moreover, the composite film was excellent at inhibiting oxidative deterioration (TBARS value: 2.12 mg/kg, day10) and keeping the texture of crayfish muscle. Overall, our results suggested that the CS/LM/CA composite film produced can be applied as a biodegradable film in aquatic product packaging.
Funder
Young scholars of Hubei Academy of Agricultural Sciences
Subject
Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science