Immunomodulatory and Antioxidant Effects of Spray-Dried Encapsulated Kale Sprouts after In Vitro Gastrointestinal Digestion

Author:

Ortega-Hernández Erika12ORCID,Camero-Maldonado Ana Victoria3,Acevedo-Pacheco Laura1ORCID,Jacobo-Velázquez Daniel A.45ORCID,Antunes-Ricardo Marilena12ORCID

Affiliation:

1. Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico

2. Tecnologico de Monterrey, Institute for Obesity Research, Ave. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico

3. Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Av. Ignacio Morones Prieto 3000, Monterrey 64710, Mexico

4. Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. General Ramón Corona 2514, Zapopan 45201, Mexico

5. Tecnologico de Monterrey, Institute for Obesity Research, Ave. General Ramón Corona 2514, Zapopan 45201, Mexico

Abstract

The health-related compounds present in kale are vulnerable to the digestive process or storage conditions. Encapsulation has become an alternative for their protection and takes advantage of their biological activity. In this study, 7-day-old Red Russian kale sprouts grown in the presence of selenium (Se) and sulfur (S) were spray-dried with maltodextrin to assess their capacity to protect kale sprout phytochemicals from degradation during the digestion process. Analyses were conducted on the encapsulation efficiency, particle morphology, and storage stability. Mouse macrophages (Raw 264.7) and human intestinal cells (Caco-2) were used to assess the effect of the intestinal-digested fraction of the encapsulated kale sprout extracts on the cellular antioxidant capacity, the production of nitric oxide (NOx), and the concentrations of different cytokines as indicators of the immunological response. The highest encapsulation efficiency was observed in capsules with a 50:50 proportion of the hydroalcoholic extract of kale and maltodextrin. Gastrointestinal digestion affected compounds’ content in encapsulated and non-encapsulated kale sprouts. Spray-dried encapsulation reduced the phytochemicals’ degradation during storage, and the kale sprouts germinated with S and Se showed less degradation of lutein (35.6%, 28.2%), glucosinolates (15.4%, 18.9%), and phenolic compounds (20.3%, 25.7%), compared to non-encapsulated ones, respectively. S-encapsulates exerted the highest cellular antioxidant activity (94.2%) and immunomodulatory activity by stimulating IL-10 production (88.9%) and COX-2 (84.1%) and NOx (92.2%) inhibition. Thus, encapsulation is an effective method to improve kale sprout phytochemicals’ stability and bioactivity during storage and metabolism.

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3