Optimization of Water Lentil (Duckweed) Leaf Protein Purification: Identification, Structure, and Foaming Properties

Author:

Muller Tristan12,Bernier Marie-Ève12,Bazinet Laurent12ORCID

Affiliation:

1. Institute of Nutrition and Functional Foods (INAF), Department of Food Sciences, Université Laval, Quebec, QC G1V 0A6, Canada

2. Laboratoire de Transformation Alimentaire et Procédés Électro Membranaires (LTAPEM), Laboratory of Food Processing and Electro Membrane Processes, Université Laval, Quebec, QC G1V 0A6, Canada

Abstract

Water lentil, commonly known as duckweed, is an aquatic plant with great agronomic potential, as it can double its biomass in less than 24 h and contains up to 45% leaf proteins on a dry matter basis. However, extracting proteins from leaves is an arduous process due to the complexity of the matrix, which limits their uses in the food industry. In this study, water lentil protein extraction by solubilization was maximized using response surface methodology. By heating at 80 °C at pH 11 with a water lentil powder concentration of 2% or 4% for 2 h, up to 77.8% of total proteins were solubilized. Then, by precipitating the solubilized proteins at pH 4, a protein purity of 57.6% combined with a total protein yield of 60.0% was achieved. To the best of our knowledge, this is the highest leaf protein extraction yield reported in the literature with such protein purity. Proteomics analyses showed that the protein concentrate was composed of around 85.0% RubisCO, and protein structure analyses using ATR-FTIR and DSC were linked to a high protein solubility in water at pH 7. Moreover, a 1.5% protein solution of the protein concentrate at pH 7 showed excellent foaming properties compared to a 10.3% protein egg white solution. It had a superior foaming capacity (194% vs. 122%, respectively) for the same foaming stability after 60 min, which confirms water lentil proteins’ potential for human nutrition and food formulation.

Funder

Consortium de Recherche et Innovations en Bioprocédés Industriels au Québec

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Reference89 articles.

1. Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., and Möller, V. (2023). Climate Change 2022: Impacts, Adaptation and Vulnerability, Cambridge University Press. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.

2. Food systems are responsible for a third of global anthropogenic GHG emissions;Crippa;Nat. Food,2021

3. Carbon footprint of Canadian self-selected diets: Comparing intake of foods, nutrients, and diet quality between low- and high-greenhouse gas emission diets;Auclair;J. Clean. Prod.,2021

4. Composition, physicochemical properties of pea protein and its application in functional foods;Lu;Crit. Rev. Food Sci. Nutr.,2020

5. A review on plant-based proteins from soybean: Health benefits and soy product development;Qin;J. Agric. Food Res.,2022

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3