Effect of Sequential Inoculation of Tetragenococcus halophilus and Wickerhamomyces anomalus on the Flavour Formation of Early-Stage Moromi Fermented at a Lower Temperature

Author:

Li Xinzhi1234,Xu Xinyu2,Wu Changzheng234,Tong Xing234,Ou Shiyi1

Affiliation:

1. Department of Food Science and Technology, Jinan University, Guangzhou 510632, China

2. Guangdong Haitian Innovation Technology Co., Ltd., Foshan 528000, China

3. Key Laboratory of Advanced Technology Enterprise of Guangdong Seasoning Food Biofermentation, Foshan 528000, China

4. Guangdong Provincial Research Centre of Brewing Microbiology Breeding and Fermentation Engineering Technology, Foshan 528000, China

Abstract

Microbial inoculation in moromi fermentation has a great influence on the physicochemical and flavour properties of soy sauces. This work investigated the effect of inoculating Tetragenococcus halophilus and Wickerhamomyces anomalus on the flavour formation of early-stage moromi (30 days) fermented at a lower temperature (22 °C) by determining their physicochemical and aroma changes. The results showed that single yeast or LAB inoculation increased the production of amino nitrogen, lactic acid and acetic acid, as well as free amino acids and key flavour components. Particularly, the sequential inoculation of T. halophilus and W. anomalus produced more free amino acids and aromatic compounds, and there might be synergistic effects between these two strains. More characteristic soy sauce flavour compounds, such as benzaldehyde, HEMF, guaiacol and methyl maltol were detected in the sequentially inoculated moromi, and this sample showed higher scores in savoury, roasted and caramel intensities. These results confirmed that sequential inoculation of T. halophilus and W. anomalus could be a choice for the future production of moromi with good flavour and quality under a lower temperature.

Funder

National Key Research and Development Program of China

Postdoctoral Foundation of Chancheng District, Foshan City, Guangdong Province

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3