Sodium Selenate, Potassium Hydroxy-Selenide, Acetylselenide and Their Effect on Antioxidant Metabolism and Plant Nutrition and Yield in Sorghum Genotypes

Author:

Cipriano Patriciani Estela12ORCID,da Silva Rodrigo Fonseca1ORCID,de Oliveira Cynthia1ORCID,de Lima Alexandre Boari1,Martins Fabio Aurélio Dias3,Celante Gizele4,dos Santos Alcindo Aparecido4ORCID,Archilha Marcos Vinicio Lopes Rodrigues45,Pinatto Botelho Marcos Felipe45,Faquin Valdemar1,Guilherme Luiz Roberto Guimarães1ORCID

Affiliation:

1. Department of Soil Science, Federal University of Lavras, Lavras 37200-900, MG, Brazil

2. Minas Gerais Agricultural Research Agency, Experimental Field of Maria da Fé, Maria da Fé 37517-000, MG, Brazil

3. Minas Gerais Agricultural Research Agency, Experimental Field of Lavras, Lavras 37200-900, MG, Brazil

4. Institute of Chemistry, University of São Paulo, Butantã 05508-000, SP, Brazil

5. SelenoLife Selênio P/Vida Ltda, Butantã 05508-000, SP, Brazil

Abstract

Agronomic biofortification with selenium (Se) effectively reduces hidden hunger and increases the nutritional intake of Se in people and animals. Because sorghum is a staple diet for millions of people and is used in animal feed, it becomes a crop with biofortification potential. Consequently, this study aimed to compare organoselenium compounds with selenate, which is effective in numerous crops, and to assess grain yield, the effect in the antioxidant system, and macronutrient/micronutrient contents of different sorghum genotypes treated with Se, via foliar spray. The trials used a 4 × 8 factorial design, with four Se sources (control—without Se supply, sodium selenate, potassium hydroxy-selenide, acetylselenide) and eight genotypes (BM737, BRS310, Enforcer, K200, Nugrain320, Nugrain420, Nugrain430, and SHS410). The Se rate used was 0.125 mg plant−1. All genotypes reacted effectively to foliar fertilization with Se through sodium selenate. In this experiment, potassium hydroxy-selenide and acetylselenide showed low Se levels and lower Se uptake and absorption efficiency than selenate. Selenium fertilization increased grain yield and altered lipid peroxidation by malondialdehyde content, hydrogen peroxide content, catalase activity, ascorbate peroxidase, superoxide dismutase, and macronutrients and micronutrients content of the studied genotypes. In sum, biofortification with selenium led to an overall yield increase of sorghum plants and supplementation with selenium through sodium selenate was more efficient than organoselenium compounds, yet acetylselenide had a positive effect on the antioxidant system. Sorghum can be effectively biofortified through the foliar application of sodium selenate; however, studying the interaction between organic and inorganic Se compounds in plants is necessary.

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hybridized Rule-Based Recommendation System for Sustainable and Synthetic Fertilizers in Coffee Plantation;2023 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT);2023-11-20

2. Predictive Analysis Based Deep Context-Aware Recommendation for Synthetic Fertilisers;2023 4th International Conference on Smart Electronics and Communication (ICOSEC);2023-09-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3