Qualitative and Quantitative Assessments of Apple Quality Using Vis Spectroscopy Combined with Improved Particle-Swarm-Optimized Neural Networks

Author:

Peng Wenping1,Ren Zhong12,Wu Junli1,Xiong Chengxin1,Liu Longjuan1,Sun Bingheng1,Liang Gaoqiang1,Zhou Mingbin1

Affiliation:

1. Key Laboratory of Optic-Electronics and Communication, Jiangxi Science and Technology Normal University, Nanchang 330038, China

2. Key Laboratory of Optic-Electronic Detection and Information Processing of Nanchang City, Jiangxi Science and Technology Normal University, Nanchang 330038, China

Abstract

Exploring a cost-effective and high-accuracy optical detection method is of great significance in promoting fruit quality evaluation and grading sales. Apples are one of the most widely economic fruits, and a qualitative and quantitative assessment of apple quality based on soluble solid content (SSC) was investigated via visible (Vis) spectroscopy in this study. Six pretreatment methods and principal component analysis (PCA) were utilized to enhance the collected spectra. The qualitative assessment of apple SSC was performed using a back-propagation neural network (BPNN) combined with second-order derivative (SD) and Savitzky–Golay (SG) smoothing. The SD-SG-PCA-BPNN model’s classification accuracy was 87.88%. To improve accuracy and convergence speed, a dynamic learning rate nonlinear decay (DLRND) strategy was coupled with the model. After that, particle swarm optimization (PSO) was employed to optimize the model. The classification accuracy was 100% for testing apples via the SD-SG-PCA-PSO-BPNN model combined with a Gaussian DLRND strategy. Then, quantitative assessments of apple SSC values were performed. The correlation coefficient (r) and root-square-mean error for prediction (RMSEP) in testing apples were 0.998 and 0.112 °Brix, surpassing a commercial fructose meter. The results demonstrate that Vis spectroscopy combined with the proposed synthetic model has significant value in qualitative and quantitative assessments of apple quality.

Funder

Chinese National Natural Science Fund

Key Project of Natural and Science Fund of Jiangxi Province

Young top-notch personnel fund project of JXSTNU

project of Key Laboratory of Optic-electronic Detection and Information Processing of Nanchang City

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3