Evaluating Kinetics of Convection Drying and Microstructure Characteristics of Asian Seabass Fish Skin without and with Ultrasound Pretreatment

Author:

Fikry Mohammad12ORCID,Benjakul Soottawat23ORCID,Al-Ghamdi Saleh4ORCID,Tagrida Mohamed2ORCID,Prodpran Thummanoon25ORCID

Affiliation:

1. Department of Agricultural and Biosystems Engineering, Faculty of Agriculture, Benha University, Moshtohor, Toukh 13736, Egypt

2. International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand

3. Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea

4. Department of Agricultural Engineering, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia

5. Center of Excellence in Bio-Based Materials and Packaging Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand

Abstract

Convection drying in combination with ultrasound pretreatment has emerged as a promising technology for seafood manufacturing. The primary objective of this research was to model the mass transfer process of Asian seabass (Lates calcarifer) fish skin without and with ultrasound pretreatment during convection drying at different temperatures (45, 55, and 65 °C). Additionally, the study aimed to examine the impact of ultrasound pretreatment and temperatures on the drying characteristics and specific energy consumption for drying of Asian seabass fish skin. Seven semi-theoretical models, namely Lewis, Page, modified Page, Vega-Lemus, Verma, Henderson and Pabis, and two-term models, were employed to characterize the moisture transfer process. The results of the study indicated a decrease in the moisture content as the drying time increased at different drying temperatures. Higher drying temperatures were associated with an increased drying rate. Among the mathematical models tested, the modified Page model provided a satisfactory description of the thin-layer drying characteristics of fish skin. Fick’s law of diffusion was utilized to determine the effective moisture diffusivities. Comparing the drying of fish skin without (SS) and with ultrasound pretreatment (US-SS), the drying of the latter generally showed higher Deff values. The temperature dependence of the effective diffusivity coefficient was well described by the Arrhenius-type model. An increase in the drying temperature resulted in an increment of the effective moisture diffusivity. In general, the skin pretreated using ultrasound had a reduced drying time, by up to 28%. Additionally, this approach contributed to an approximate 22% reduction in the specific energy consumption, concurrently enhancing the energy efficiency. The microstructure analysis showed that fresh and dried US-SS samples had a more open structure and higher porosity, in comparison to the corresponding SS samples. These findings contribute to the knowledge on the application of ultrasound as the pretreatment of fish skin before drying and provide valuable insights for the development of potential drying techniques in the seafood industry.

Funder

Deputyship of Research and Innovation, “Ministry of Education” in Saudi Arabia

Songkla University

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3