Co-Encapsulation of Curcumin and Diosmetin in Nanoparticles Formed by Plant-Food-Protein Interaction Using a pH-Driven Method

Author:

Yu Chong12ORCID,Shan Jingyu2,Fu Ze2,Ju Hao2,Chen Xiao2,Xu Guangsen2,Liu Yang2,Li Huijing2,Wu Yanchao2ORCID

Affiliation:

1. Harbin Jilida Technology Co., Ltd., Harbin 150001, China

2. School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China

Abstract

In this work, a pH-driven method was used to prepare zein–soy protein isolate (SPI) composite nanoparticles (NPs). The mass ratio of SPI to zein influenced the Z-average size (Z-ave). Once the zeta potential stabilized, SPI was completely coated on the periphery of the zein NPs. The optimal mass ratio of zein:SPI was found to be 2:3. After determining the structure using TEM, curcumin (Cur) and/or diosmetin (Dio) were loaded into zein–SPI NPs for co-encapsulation or individual delivery. The co-encapsulation of Cur and Dio altered their protein conformations, and both Cur and Dio transformed from a crystalline structure to an amorphous form. The protein conformation change increased the number of binding sites between Dio and zein NPs. As a result, the encapsulation efficiency (EE%) of Dio improved from 43.07% to 73.41%, and thereby increased the loading efficiency (LE%) of zein-SPI NPs to 16.54%. Compared to Dio-loaded zein–SPI NPs, Cur/Dio-loaded zein–SPI NPs improved the storage stability of Dio from 61.96% to 82.41% within four weeks. The extended release of bioactive substances in the intestine during simulated gastrointestinal digestion improved the bioavailability. When exposed to a concentration of 0–800 µg/mL blank-loaded zein–SPI NPs, the viability of HepG2 and LO-2 cells was more than 90%, as shown in MTT assay tests. The zein–SPI NPs are non-toxic, biocompatible, and have potential applications in the food industry.

Funder

National Natural Science Foundation of China

Project of Improving the Innovation Ability of Medium and Small-Sized Technology-Based Enterprises in Shandong Province

Harbin Jilida Technology Co., Ltd.

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3