Evaluation of Growth and Production of High-Value-Added Metabolites in Scenedesmus quadricauda and Chlorella vulgaris Grown on Crude Glycerol under Heterotrophic and Mixotrophic Conditions Using Monochromatic Light-Emitting Diodes (LEDs)

Author:

Korozi Evagelina1ORCID,Kefalogianni Io1ORCID,Tsagou Vasiliki1ORCID,Chatzipavlidis Iordanis1ORCID,Markou Giorgos2ORCID,Karnaouri Anthi1ORCID

Affiliation:

1. Laboratory of General and Agricultural Microbiology, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece

2. Laboratory of Food Biotechnology and Recycling of Agricultural By-Products, Institute of Technology of Agricultural Products, Hellenic Agricultural Organization-Demeter, Leof. Sofokli Venizelou 1, Lykovrysi, 14123 Athens, Greece

Abstract

This study aimed to examine the impact of crude glycerol as the main carbon source on the growth, cell morphology, and production of high-value-added metabolites of two microalgal species, namely Chlorella vulgaris and Scenedesmus quadricauda, under heterotrophic and mixotrophic conditions, using monochromatic illumination from light-emitting diodes (LEDs) emitting blue, red, yellow, and white (control) light. The findings indicated that both microalgae strains exhibited higher biomass yield on the mixotrophic growth system when compared to the heterotrophic one, while S. quadricauda generally performed better than C. vulgaris. In mixotrophic mode, the use of different monochromatic illumination affected biomass production differently on both strains. In S. quadricauda, growth rate was higher under red light (μmax = 0.89 d−1), while the highest biomass concentration and yield per gram of consumed glycerol were achieved under yellow light, reaching 1.86 g/L and Yx/s = 0.18, respectively. On the other hand, C. vulgaris demonstrated a higher growth rate on blue light (μmax = 0.45 d−1) and a higher biomass production on white (control) lighting (1.34 g/L). Regarding the production of metabolites, higher yields were achieved during mixotrophic mode in both strains. In C. vulgaris, the highest lipid (26.5% of dry cell weight), protein (63%), and carbohydrate (20.3%) contents were obtained under blue, red, and yellow light, respectively, thus indicating that different light wavelengths probably activate different metabolic pathways. Similar results were obtained for S. quadricauda with red light leading to higher lipid content, while white lighting caused higher production of proteins and carbohydrates. Overall, the study demonstrated the potential of utilizing crude glycerol as a carbon source for the growth and metabolite production of microalgae and, furthermore, revealed that the strains’ behavior varied depending on lighting conditions.

Funder

European Social Fund-ESF

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3