Study on the Function of Conveying, Kneading Block and Reversing Elements on the Mixing Efficiency and Dispersion Effect inside the Barrel of an Extruder with Numerical Simulation

Author:

Wu Min1,Sun Dongyu1,Zhang Tong1,Zhou Chengyi1,Zhang Bowen1

Affiliation:

1. College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, P.O. Box 50, Beijing 100083, China

Abstract

In order to better understand the extrusion process mechanism of plant protein inside a barrel, the parameter changes and flow characteristics of fluids under conveying, kneading block and reversing elements were investigated with numerical simulation. The results showed that the shear rate increased obviously with the increase in pitch; the shear rate value of the reversing element was larger, while that of the kneading block was the opposite. The screw combinations of conveying, kneading blocks and reversing elements all have a certain degree of mixing effect on the particles, and the reduction in pitch can effectively increase the mixing effect of the particles. The conveying element can provide a relatively constant acceleration for the particles, due to the pumping capability and pressure buildup as the pitch increases. The kneading block and the reversing element can increase the leakage flow between the discs and backflow, resulting in an extension of the residence time distribution that facilitates fluid interaction in the barrel and improves the dispersion of the particles. The restraint by the reversing element on the particles is obviously weaker than that of the kneading block and shows a higher particle mixing degree. Overall, the influence of different elements on the flow condition, mixing degree and residence time is significantly different, which improves the process controllability and provides references for potential applications to meet multiple demands.

Funder

the Natural Science Foundation of Beijing Municipality

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3