Effects of Puffing, Acid, and High Hydrostatic Pressure Treatments on Ginsenoside Profile and Antioxidant Capacity of Mountain-Cultivated Panax ginseng

Author:

Kim Jang-Hwan1,Shin Jae-Sung1ORCID,Kim Wooki1ORCID,Lee Hyungjae2ORCID,Baik Moo-Yeol1ORCID

Affiliation:

1. Department of Food Science and Biotechnology, Institute of Life Science and Resources, Kyung Hee University, Yongin 17104, Republic of Korea

2. Department of Food Engineering, Dankook University, Cheonan 31116, Republic of Korea

Abstract

The purpose of this study was to investigate the effects of puffing, acid, and high hydrostatic pressure (HHP) treatments on the ginsenoside profile and antioxidant capacity of mountain-cultivated Panax ginseng (MCPG) before and after treatments. Puffing and HHP treatments decreased extraction yield and increased crude saponin content. The combination of puffing and HHP treatment showed significantly higher crude saponin content than each single treatment. Puffing treatment showed the highest ginsenoside conversion compared with HHP and acid treatments. Significant ginsenoside conversion was not observed in HHP treatment but was in acid treatment. When the puffing and acid treatments were combined, Rg3 and compound K content (1.31 mg and 10.25 mg) was significantly higher than that of the control (0.13 mg and 0.16 mg) and acid treatment (0.27 mg and 0.76 mg). No synergistic effect was observed between acid and HHP treatments. In the case of functional properties, the puffing treatment showed a significant increase in TFC (29.6%), TPC (1072%), and DPPH radical scavenging capacity (2132.9%) compared to the control, while acid and HHP combined treatments did not significantly increase; therefore, the synergistic effects of HHP/puffing and acid/puffing treatments were observed in crude saponin content and ginsenoside conversion, respectively. Consequently, puffing combined with acid or HHP treatments may provide new ways to produce high-value-added MCPG with a higher content of Rg3 and compound K or crude saponin compared to untreated MCPG.

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3