Hapten Synthesis and Monoclonal Antibody Preparation for Simultaneous Detection of Albendazole and Its Metabolites in Animal-Origin Food

Author:

Shao Shibei,Zhou Xuping,Dou Leina,Bai Yuchen,Mi Jiafei,Yu Wenbo,Zhang Suxia,Wang ZhanhuiORCID,Wen Kai

Abstract

Albendazole (ABZ) is one of the benzimidazole anthelmintics, and the overuse of ABZ in breeding industry can lead to drug resistance and a variety of toxic effects in humans. Since the residue markers of ABZ are the sum of ABZ and three metabolites (collectively referred to as ABZs), albendazole-sulfone (ABZSO2), albendazole-sulfoxide (ABZSO), and albendazole-2-amino-sulfone (ABZNH2SO2), an antibody able to simultaneously recognize ABZs with high affinity is in urgent need to develop immunoassay for screening purpose. In this work, an unreported hapten, 5-(propylthio)-1H-benzo[d]imidazol-2-amine, was designed and synthesized, which maximally exposed the characteristic sulfanyl group of ABZ to the animal immune system to induce expected antibody. One monoclonal antibody (Mab) that can simultaneously detect ABZs was obtained with IC50 values of 0.20, 0.26, 0.77, and 10.5 μg/L for ABZ, ABZSO2, ABZSO, and ABZNH2SO2 in ic-ELISA under optimized conditions respectively, which has been never achieved in previous reports. For insight into the recognition profiles of the Mab, we used computational chemistry method to parameterize cross-reactive molecules in aspects of conformation, electrostatic fields, and hydrophobicity, revealing that the hydrophobicity and conformation of characteristic group of molecules might be the key factors that together influence antibody recognition with analytes. Furthermore, the practicability of the developed ic-ELISA was verified by detecting ABZs in spiked milk, beef, and liver samples with recoveries of 60% to 108.8% and coefficient of variation (CV) of 1.0% to 15.9%.

Funder

the Ministry of Science and Technology (MOST) for the National Key R&D Program of China

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3