Characteristics of Beef Patties Substituted by Different Levels of Textured Vegetable Protein and Taste Traits Assessed by Electronic Tongue System

Author:

Bakhsh AllahORCID,Lee Se-Jin,Lee Eun-Yeong,Hwang Young-Hwa,Joo Seon-TeaORCID

Abstract

The main objective of this study was to incorporate soy-based textured vegetable protein (TVP) into beef patties in different quantities (10–40%) and compare various characteristics of these innovative formulations with a regular beef patty as a control. Incorporation of 10–40% TVP resulted in significantly lower (p < 0.05) moisture and fat contents, while higher crude fiber contents were detected compared to beef as the control. In addition, cooked patties showed higher pH levels (p < 0.05), with color coordinates expressing lighter, yellowish, and slightly redder indices than raw patties. Similarly, a plant protein that includes TVP minimizes (p < 0.05) WHC (water holding capacity), both RW% (release water) and CL% (cooking loss). Furthermore, hardness, cohesiveness, and thickness were reduced significantly (p < 0.05), while gumminess and chewiness increased (p < 0.05) considerably with the substitution of TVP (10–40%) compared to the control. Patties made without TVP received higher scores for sourness, bitterness, umami, and richness than the rest of the formulations. However, a higher tendency was detected for sourness, astringency, umami, and saltiness values with increasing additions of TVP. Nevertheless, hierarchical clustering revealed that the largest group of fatty acid profiles, including palmitoleic acid (C16:1), stearic acid (C18:0), and palmitic acid (C16:0), was slightly reduced with the addition of TVP, while arachidic acid (C20:0), lauric acid (C12:0), and oleic acid (C18:1) increased moderately with increasing levels of TVP. Meanwhile, the second-largest cluster that included linoleic acid (C18:2), arachidonic acid (C20:4), and linolenic acid (C18:3) increased enormously with higher levels of TVP incorporation. Taken together, it is suggested that incorporation of TVP up to 10–40% in beef patties shows promising results.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3