Lignocellulose-Degrading Enzymes: A Biotechnology Platform for Ferulic Acid Production from Agro-Industrial Side Streams

Author:

Radenkovs VitalijsORCID,Juhnevica-Radenkova Karina,Kviesis Jorens,Lazdina Danija,Valdovska AndaORCID,Vallejo Fernando,Lacis GunarsORCID

Abstract

Biorefining by enzymatic hydrolysis (EH) of lignocellulosic waste material due to low costs and affordability has received enormous interest amongst scientists as a potential strategy suitable for the production of bioactive ingredients and chemicals. In this study, a sustainable and eco-friendly approach to extracting bound ferulic acid (FA) was demonstrated using single-step EH by a mixture of lignocellulose-degrading enzymes. For comparative purposes of the efficiency of EH, an online extraction and analysis technique using supercritical fluid extraction–supercritical fluid chromatography–mass spectrometry (SFE-SFC-MS) was performed. The experimental results demonstrated up to 369.3 mg 100 g−1 FA release from rye bran after 48 h EH with Viscozyme L. The EH of wheat and oat bran with Viscoferm for 48 h resulted in 255.1 and 33.5 mg 100 g−1 of FA, respectively. The release of FA from bran matrix using supercritical fluid extraction with carbon dioxide and ethanol as a co-solvent (SFE-CO2-EtOH) delivered up to 464.3 mg 100 g−1 of FA, though the extractability varied depending on the parameters used. The 10-fold and 30-fold scale-up experiments confirmed the applicability of EH as a bioprocessing method valid for the industrial scale. The highest yield of FA in both scale-up experiments was obtained from rye bran after 48 h of EH with Viscozyme L. In purified extracts, the absence of xylose, arabinose, and glucose as the final degradation products of lignocellulose was proven by high-performance liquid chromatography with refractive index detection (HPLC-RID). Up to 94.0% purity of FA was achieved by solid-phase extraction (SPE) using the polymeric reversed-phase Strata X column and 50% EtOH as the eluent.

Funder

Latvian Council of Science

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3