The Influence of Proteolytic Malt Modification on the Aging Potential of Final Wort

Author:

Nobis Arndt,Lehnhardt Florian,Gebauer Marcel,Becker Thomas,Gastl Martina

Abstract

The dynamic changes in beer flavor are determined by its aging potential, which comprises of present free and bound-state aldehydes and their precursors. Rising flavor-active aging compounds cause sensory deterioration (flavor instability). These compounds are mainly formed upstream in the brewing process through the Maillard reaction, the Strecker degradation, or lipid oxidation. Wort boiling is an especially critical production step for important reactions due to its high temperature and favorable pH value. Amino acid concentration, as an important aging-relevant precursor, is variable at the beginning of wort boiling, mainly caused by the malt modification level, and can further influence the aging potential aging formation during wort boiling. This study investigated the effect of the proteolytic malt modification level on the formation of precursors (amino acids and dicarbonyls) and free and bound-state aldehydes during wort boiling. Six worts (malt of two malting barley varieties at three proteolytic malt modification levels) were produced. Regarding precursors, especially Strecker, relevant amino acids and dicarbonyls increased significantly with an enhanced malt modification level. Concentrations of free and bound aldehydes were highest at the beginning of boiling and decreased toward the end. A dependency of malt modification level and the degree of free and bound aldehydes was observed for 2-methylpropanal, 2-methylbutanal, and 3-methylbutanal. Generally, a higher proteolytic malt modification level tended to increase free and bound aldehyde content at the end of wort boiling. Conclusively, the aging potential formation during boiling was increased by an intensified malt modification level.

Funder

AiF Projekt

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health(social science),Microbiology,Food Science

Reference50 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3